
1

MIT EECS 6.837, Cutler and Durand 1

Rasterization

MIT EECS 6.837
Frédo Durand and Barb Cutler

MIT EECS 6.837, Cutler and Durand 2

Final projects
• Rest of semester

– Weekly meetings with TAs
– Office hours on appointment

• This week, with TAs
– Refine timeline
– Define high-level architecture

• Project should be a whole, but subparts should be
identified with regular merging of code

MIT EECS 6.837, Cutler and Durand 3

The Graphics Pipeline
Modeling

Transformations

Illumination
(Shading)

Viewing Transformation
(Perspective / Orthographic)

Clipping

Projection
(to Screen Space)

Scan Conversion
(Rasterization)

Visibility / Display

MIT EECS 6.837, Cutler and Durand 4

Modeling Transformations
• 3D models defined in their own

coordinate system (object space)
• Modeling transforms orient the

models within a common
coordinate frame (world space)

Modeling
Transformations

Illumination
(Shading)

Viewing Transformation
(Perspective / Orthographic)

Clipping

Projection
(to Screen Space)

Scan Conversion
(Rasterization)

Visibility / Display
Object space World space

MIT EECS 6.837, Cutler and Durand 5

Illumination (Shading) (Lighting)
• Vertices lit (shaded) according to

material properties, surface
properties (normal) and light sources

• Local lighting model
(Diffuse, Ambient, Phong, etc.)

Modeling
Transformations

Illumination
(Shading)

Viewing Transformation
(Perspective / Orthographic)

Clipping

Projection
(to Screen Space)

Scan Conversion
(Rasterization)

Visibility / Display

MIT EECS 6.837, Cutler and Durand 6

Viewing Transformation
• Maps world space to eye space
• Viewing position is transformed

to origin & direction is oriented
along some axis (usually z)

Modeling
Transformations

Illumination
(Shading)

Viewing Transformation
(Perspective / Orthographic)

Clipping

Projection
(to Screen Space)

Scan Conversion
(Rasterization)

Visibility / Display

Eye space

World space

2

MIT EECS 6.837, Cutler and Durand 7

Clipping
• Transform to Normalized Device

Coordinates (NDC)

• Portions of the object
outside the view
volume
(view frustum)
are removed

Modeling
Transformations

Illumination
(Shading)

Viewing Transformation
(Perspective / Orthographic)

Clipping

Projection
(to Screen Space)

Scan Conversion
(Rasterization)

Visibility / Display

Eye space NDC

MIT EECS 6.837, Cutler and Durand 8

Projection
• The objects are projected to the

2D image place (screen space)
Modeling

Transformations

Illumination
(Shading)

Viewing Transformation
(Perspective / Orthographic)

Clipping

Projection
(to Screen Space)

Scan Conversion
(Rasterization)

Visibility / Display

NDC Screen Space

MIT EECS 6.837, Cutler and Durand 9

Scan Conversion (Rasterization)
• Rasterizes objects into pixels
• Interpolate values as we go

(color, depth, etc.)

Modeling
Transformations

Illumination
(Shading)

Viewing Transformation
(Perspective / Orthographic)

Clipping

Projection
(to Screen Space)

Scan Conversion
(Rasterization)

Visibility / Display

MIT EECS 6.837, Cutler and Durand 10

Visibility / Display
• Each pixel remembers the

closest object (depth buffer)

• Almost every step in the
graphics pipeline involves a
change of coordinate system.
Transformations are central to
understanding 3D computer
graphics.

Modeling
Transformations

Illumination
(Shading)

Viewing Transformation
(Perspective / Orthographic)

Clipping

Projection
(to Screen Space)

Scan Conversion
(Rasterization)

Visibility / Display

MIT EECS 6.837, Cutler and Durand 11

Today
• Polygon scan conversion

– smart

– back to brute force

• Visibility

MIT EECS 6.837, Cutler and Durand 12

2D Scan Conversion
• Geometric primitive

– 2D: point, line, polygon, circle...
– 3D: point, line, polyhedron, sphere...

• Primitives are continuous; screen is discrete

3

MIT EECS 6.837, Cutler and Durand 13

2D Scan Conversion
• Solution: compute discrete approximation
• Scan Conversion:

algorithms for efficient generation of the samples
comprising this approximation

MIT EECS 6.837, Cutler and Durand 14

Brute force solution for triangles
• ?

MIT EECS 6.837, Cutler and Durand 15

Brute force solution for triangles
• For each pixel

– Compute line equations at pixel center
– “clip” against the triangle

Problem?

MIT EECS 6.837, Cutler and Durand 16

Brute force solution for triangles
• For each pixel

– Compute line equations at pixel center
– “clip” against the triangle

Problem?
If the triangle is small,
a lot of useless
computation

MIT EECS 6.837, Cutler and Durand 17

Brute force solution for triangles
• Improvement:

– Compute only for the screen bounding box of the
triangle

– How do we get such a bounding box?

MIT EECS 6.837, Cutler and Durand 18

Brute force solution for triangles
• Improvement:

– Compute only for the screen bounding box of the
triangle

– Xmin, Xmax, Ymin, Ymax of the triangle vertices

4

MIT EECS 6.837, Cutler and Durand 19

Can we do better? Kind of!
• We compute the line equation for many useless

pixels
• What could we do?

MIT EECS 6.837, Cutler and Durand 20

Use line rasterization
• Compute the boundary pixels

Shirley page 55

MIT EECS 6.837, Cutler and Durand 21

Scan-line Rasterization
• Compute the boundary pixels
• Fill the spans

Shirley page 55

MIT EECS 6.837, Cutler and Durand 22

Scan-line Rasterization
• Requires some initial setup to prepare

Shirley page 55

MIT EECS 6.837, Cutler and Durand 23

Clipping problem
• How do we clip parts outside window?

MIT EECS 6.837, Cutler and Durand 24

Clipping problem
• How do we clip parts outside window?
• Create two triangles or more. Quite annoying.

5

MIT EECS 6.837, Cutler and Durand 25

Old style graphics hardware
• Triangles were big
• Bresenham+interpolation is worth it
• Annoying clipping step
• + a couple of other

things have changed
• Not that good to parallelize

beyond triangle granularity

MIT EECS 6.837, Cutler and Durand 26

Questions?

MIT EECS 6.837, Cutler and Durand 27

Today
• Polygon scan conversion

– smart

– back to brute force

• Visibility

MIT EECS 6.837, Cutler and Durand 28

For modern graphics cards
• Triangles are usually very small
• Setup cost are becoming more troublesome
• Clipping is annoying
• Brute force is tractable

MIT EECS 6.837, Cutler and Durand 29

Modern rasterization
For every triangle

ComputeProjection
Compute bbox, clip bbox to screen limits
For all pixels in bbox

Compute line equations

If all line equations>0 //pixel [x,y] in triangle
Framebuffer[x,y]=triangleColor

MIT EECS 6.837, Cutler and Durand 30

Modern rasterization
For every triangle

ComputeProjection
Compute bbox, clip bbox to screen limits
For all pixels in bbox

Compute line equations

If all line equations>0 //pixel [x,y] in triangle
Framebuffer[x,y]=triangleColor

• Note that Bbox clipping is trivial

6

MIT EECS 6.837, Cutler and Durand 31

Can we do better?
For every triangle

ComputeProjection
Compute bbox, clip bbox to screen limits
For all pixels in bbox

Compute line equations

If all line equations>0 //pixel [x,y] in triangle
Framebuffer[x,y]=triangleColor

MIT EECS 6.837, Cutler and Durand 32

Can we do better?
For every triangle

ComputeProjection
Compute bbox, clip bbox to screen limits
For all pixels in bbox

Compute line equations ax+by+c
If all line equations>0 //pixel [x,y] in triangle

Framebuffer[x,y]=triangleColor

• We don’t need to recompute line equation from scratch

MIT EECS 6.837, Cutler and Durand 33

Can we do better?
For every triangle

ComputeProjection
Compute bbox, clip bbox to screen limits
Setup line eq

compute aidx, bidy for the 3 lines
Initialize line eq, values for bbox corner

Li=aix0+biy+ci
For all scanline y in bbox

For 3 lines, update Li
For all x in bbox

Increment line equations: Li+=adx
If all Li>0 //pixel [x,y] in triangle

Framebuffer[x,y]=triangleColor

• We save one multiplication per pixel
MIT EECS 6.837, Cutler and Durand 34

The Graphics Pipeline
• Modern hardware mostly

avoids clipping
• Only with respect to

plane z=0

Modeling
Transformations

Illumination
(Shading)

Viewing Transformation
(Perspective / Orthographic)

Clipping

Projection
(to Screen Space)

Scan Conversion
(Rasterization)

Visibility / Display

MIT EECS 6.837, Cutler and Durand 35

Full Clipping

(eyex, eyey, eyez)

image plane

z axis

"clip" geometry to
view frustum

MIT EECS 6.837, Cutler and Durand 36

One-plane clipping

(eyex, eyey, eyez)

image plane

z axis

"clip" geometry to
near plane

7

MIT EECS 6.837, Cutler and Durand 37

Adding Gouraud shading
• Interpolate colors of the 3 vertices
• Linear interpolation

MIT EECS 6.837, Cutler and Durand 38

Adding Gouraud shading
• Interpolate colors of the 3 vertices
• Linear interpolation, e.g. for R channel:

– R=aRx+bRy+cR

– Such that R[x0,y0]=R0; R[x1, y1]=R1; R[x2,y2]=R2
– Same as a plane equation in (x,y,R)

MIT EECS 6.837, Cutler and Durand 39

Adding Gouraud shading
Interpolate colors
For every triangle

ComputeProjection
Compute bbox, clip bbox to screen limits
Setup line eq
Setup color equation
For all pixels in bbox

Increment line equations
Increment color equation
If all Li>0 //pixel [x,y] in triangle

Framebuffer[x,y]=interpolatedColor

MIT EECS 6.837, Cutler and Durand 40

In the modern hardware
• Edge eq. in homogeneous coordinates [x, y, w]
• Tiles to add a mid-level granularity

– early rejection of tiles
– Memory access coherence

MIT EECS 6.837, Cutler and Durand 41

Ref
• Henry Fuchs, Jack Goldfeather, Jeff Hultquist, Susan Spach, John

Austin, Frederick Brooks, Jr., John Eyles and John Poulton, “Fast
Spheres, Shadows, Textures, Transparencies, and Image
Enhancements in Pixel-Planes”, Proceedings of SIGGRAPH ‘85
(San Francisco, CA, July 22–26, 1985). In Computer Graphics,
v19n3 (July 1985), ACM SIGGRAPH, New York, NY, 1985.

• Juan Pineda, “A Parallel Algorithm for Polygon Rasterization”,
Proceedings of SIGGRAPH ‘88 (Atlanta, GA, August 1–5, 1988).
In Computer Graphics, v22n4 (August 1988), ACM SIGGRAPH,
New York, NY, 1988. Figure 7: Image from the spinning teapot
performance test.

• Triangle Scan Conversion using 2D Homogeneous Coordinates,
Marc Olano Trey Greer
http://www.cs.unc.edu/~olano/papers/2dh-tri/2dh-tri.pdf

MIT EECS 6.837, Cutler and Durand 42

Take-home message
• The appropriate algorithm depends on

– Balance between various resources (CPU, memory,
bandwidth)

– The input (size of triangles, etc.)
• Smart algorithms often have initial preprocess

– Assess whether it is worth it
• To save time, identify redundant computation

– Put outside the loop and interpolate if needed

8

MIT EECS 6.837, Cutler and Durand 43

Questions?

MIT EECS 6.837, Cutler and Durand 44

Today
• Polygon scan conversion

– smart

– back to brute force

• Visibility

MIT EECS 6.837, Cutler and Durand 45

Visibility
• How do we know which parts are visible/in

front?

MIT EECS 6.837, Cutler and Durand 46

Ray Casting
• Maintain intersection with closest object

MIT EECS 6.837, Cutler and Durand 47

Painter’s algorithm
• Draw back-to-front
• How do we sort objects?
• Can we always sort objects?

1

2

5

4
3

6

7

MIT EECS 6.837, Cutler and Durand 48

Painter’s algorithm
• Draw back-to-front
• How do we sort objects?
• Can we always sort objects?

– No, there can be cycles
– Requires to split polygons

A

B

C

A

B

9

MIT EECS 6.837, Cutler and Durand 49

Painter’s algorithm
• Old solution for hidden-surface removal

– Good because ordering is useful for other operations
(transparency, antialiasing)

• But
– Ordering is tough
– Cycles
– Must be done by CPU

• Hardly used now
• But some sort of partial ordering is sometimes useful

– Usuall front-to-back
– To make sure foreground is rendered first

MIT EECS 6.837, Cutler and Durand 50

visibility
• In ray casting, use intersection with closest t
• Now we have swapped the loops (pixel, object)
• How do we do?

MIT EECS 6.837, Cutler and Durand 51

Z buffer
• In addition to frame buffer (R, G, B)
• Store distance to camera (z-buffer)
• Pixel is updated only if new z is closer

than z-buffer value

MIT EECS 6.837, Cutler and Durand 52

Z-buffer pseudo code
For every triangle

Compute Projection, color at vertices
Setup line equations
Compute bbox, clip bbox to screen limits
For all pixels in bbox

Increment line equations
Compute curentZ
Increment currentColor

If all line equations>0 //pixel [x,y] in triangle
If currentZ<zBuffer[x,y] //pixel is visible

Framebuffer[x,y]=currentColor
zBuffer[x,y]=currentZ

MIT EECS 6.837, Cutler and Durand 53

Works for hard cases!

A

B

C

MIT EECS 6.837, Cutler and Durand 54

What exactly do we store
• Floating point distance
• Can we interpolate z in screen space?

– i.e. does z vary linearly in screen space?
z0

z1

x

image

x’

10

MIT EECS 6.837, Cutler and Durand 55

Z interpolation
• X’=x/z
• Hyperbolic variation
• Z cannot be linearly interpolated

z0

z1

x

image

x’

MIT EECS 6.837, Cutler and Durand 56

Simple Perspective Projection
• Project all points along the z axis to the z = d

plane, eyepoint at the origin

x
y
z

z / d

=

x
y
z
1

1
0
0
0

0
1
0
0

0
0
1

1/d

0
0
0
0

x * d / z
y * d / z

d
1

=

homogenize

MIT EECS 6.837, Cutler and Durand 57

Yet another Perspective Projection
• Change the z component
• Compute d/z
• Can be linearly interpolated

x
y
1

z / d

=

x
y
z
1

1
0
0
0

0
1
0
0

0
0
0

1/d

0
0
1
0

x * d / z
y * d / z

d/z
1

=

homogenize

MIT EECS 6.837, Cutler and Durand 58

Advantages of 1/z
• Can be interpolated linearly in screen space
• Puts more precision for close objects
• Useful when using integers

– more precision where perceptible

MIT EECS 6.837, Cutler and Durand 59

Integer z-buffer
• Use 1/z to have more precision in the foreground
• Set a near and far plane

– 1/z values linearly encoded between 1/near and 1/far
• Careful, test direction is reversed

x

far

near

MIT EECS 6.837, Cutler and Durand 60

Integer Z-buffer pseudo code
For every triangle

Compute Projection, color at vertices
Setup line equations, depth equation
Compute bbox, clip bbox to screen limits
For all pixels in bbox

Increment line equations
Increment curent_1ovZ
Increment currentColor

If all line equations>0 //pixel [x,y] in triangle
If current_1ovZ>1ovzBuffer[x,y]//pixel is visible

Framebuffer[x,y]=currentColor
1ovzBuffer[x,y]=current1ovZ

11

MIT EECS 6.837, Cutler and Durand 61

Gouraud interpolation
• Gouraud: interpolate color linearly in screen space
• Is it correct?

z0

z1

x

image

x’

[R0, G0, B0]

[R1, G1, B1]
MIT EECS 6.837, Cutler and Durand 62

Gouraud interpolation
• Gouraud: interpolate color linearly in screen space
• Not correct. We should use hyperbolic interpolation
• But quite costly (division)

z0

z1

x

image

x’

[R0, G0, B0]

[R1, G1, B1]

MIT EECS 6.837, Cutler and Durand 63

Next time
• Clipping
• Segment intersection & scanline algorithms

