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Rasterization

MIT EECS 6.837
Frédo Durand and Barb Cutler
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Final projects
• Rest of semester

– Weekly meetings with TAs
– Office hours on appointment

• This week, with TAs
– Refine timeline
– Define high-level architecture

• Project should be a whole, but subparts should be 
identified with regular merging of code
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The Graphics Pipeline
Modeling 

Transformations

Illumination
(Shading)

Viewing Transformation
(Perspective / Orthographic)

Clipping

Projection 
(to Screen Space)

Scan Conversion
(Rasterization)

Visibility / Display
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Modeling Transformations
• 3D models defined in their own 

coordinate system (object space)
• Modeling transforms orient the 

models within a common 
coordinate frame (world space)

Modeling 
Transformations

Illumination
(Shading)

Viewing Transformation
(Perspective / Orthographic)

Clipping

Projection 
(to Screen Space)

Scan Conversion
(Rasterization)

Visibility / Display
Object space World space
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Illumination (Shading) (Lighting)
• Vertices lit (shaded) according to 

material properties, surface 
properties (normal) and light sources

• Local lighting model 
(Diffuse, Ambient, Phong, etc.)

Modeling 
Transformations

Illumination
(Shading)

Viewing Transformation
(Perspective / Orthographic)

Clipping

Projection 
(to Screen Space)

Scan Conversion
(Rasterization)

Visibility / Display
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Viewing Transformation
• Maps world space to eye space
• Viewing position is transformed 

to origin & direction is oriented 
along some axis (usually z)

Modeling 
Transformations

Illumination
(Shading)

Viewing Transformation
(Perspective / Orthographic)

Clipping

Projection 
(to Screen Space)

Scan Conversion
(Rasterization)

Visibility / Display

Eye space

World space
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Clipping
• Transform to Normalized Device 

Coordinates (NDC) 

• Portions of the object 
outside the view 
volume 
(view frustum) 
are removed

Modeling 
Transformations

Illumination
(Shading)

Viewing Transformation
(Perspective / Orthographic)

Clipping

Projection 
(to Screen Space)

Scan Conversion
(Rasterization)

Visibility / Display

Eye space NDC
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Projection
• The objects are projected to the 

2D image place (screen space)
Modeling 

Transformations

Illumination
(Shading)

Viewing Transformation
(Perspective / Orthographic)

Clipping

Projection 
(to Screen Space)

Scan Conversion
(Rasterization)

Visibility / Display

NDC Screen Space
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Scan Conversion (Rasterization)
• Rasterizes objects into pixels
• Interpolate values as we go 

(color, depth, etc.)

Modeling 
Transformations

Illumination
(Shading)

Viewing Transformation
(Perspective / Orthographic)

Clipping

Projection 
(to Screen Space)

Scan Conversion
(Rasterization)

Visibility / Display
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Visibility / Display
• Each pixel remembers the 

closest object (depth buffer)

• Almost every step in the 
graphics pipeline involves a 
change of coordinate system.  
Transformations are central to 
understanding 3D computer 
graphics.

Modeling 
Transformations

Illumination
(Shading)

Viewing Transformation
(Perspective / Orthographic)

Clipping

Projection 
(to Screen Space)

Scan Conversion
(Rasterization)

Visibility / Display
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Today
• Polygon scan conversion

– smart

– back to brute force

• Visibility
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2D Scan Conversion
• Geometric primitive

– 2D: point, line, polygon, circle...
– 3D: point, line, polyhedron, sphere...

• Primitives are continuous; screen is discrete
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2D Scan Conversion
• Solution: compute discrete approximation
• Scan Conversion: 

algorithms for efficient generation of the samples 
comprising this approximation
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Brute force solution for triangles
• ?
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Brute force solution for triangles
• For each pixel

– Compute line equations at pixel center
– “clip” against the triangle

Problem?
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Brute force solution for triangles
• For each pixel

– Compute line equations at pixel center
– “clip” against the triangle

Problem?
If the triangle is small, 
a lot of useless 
computation
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Brute force solution for triangles
• Improvement:

– Compute only for the screen bounding box of the 
triangle

– How do we get such a bounding box?
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Brute force solution for triangles
• Improvement:

– Compute only for the screen bounding box of the 
triangle

– Xmin, Xmax, Ymin, Ymax of the triangle vertices
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Can we do better? Kind of! 
• We compute the line equation for many useless 

pixels
• What could we do?
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Use line rasterization
• Compute the boundary pixels

Shirley page 55
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Scan-line Rasterization
• Compute the boundary pixels
• Fill the spans

Shirley page 55
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Scan-line Rasterization
• Requires some initial setup to prepare 

Shirley page 55
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Clipping problem
• How do we clip parts outside window?
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Clipping problem
• How do we clip parts outside window?
• Create two triangles or more. Quite annoying.
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Old style graphics hardware
• Triangles were big
• Bresenham+interpolation is worth it
• Annoying clipping step
• + a couple of other

things have changed
• Not that good to parallelize 

beyond triangle granularity
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Questions?
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Today
• Polygon scan conversion

– smart

– back to brute force

• Visibility
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For modern graphics cards
• Triangles are usually very small
• Setup cost are becoming more troublesome
• Clipping is annoying 
• Brute force is tractable

MIT EECS 6.837, Cutler and Durand 29

Modern rasterization
For every triangle

ComputeProjection
Compute bbox, clip bbox to screen limits
For all pixels in bbox

Compute line equations

If all line equations>0 //pixel [x,y] in triangle
Framebuffer[x,y]=triangleColor

MIT EECS 6.837, Cutler and Durand 30

Modern rasterization
For every triangle

ComputeProjection
Compute bbox, clip bbox to screen limits
For all pixels in bbox

Compute line equations

If all line equations>0 //pixel [x,y] in triangle
Framebuffer[x,y]=triangleColor

• Note that Bbox clipping is trivial
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Can we do better?
For every triangle

ComputeProjection
Compute bbox, clip bbox to screen limits
For all pixels in bbox

Compute line equations

If all line equations>0 //pixel [x,y] in triangle
Framebuffer[x,y]=triangleColor
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Can we do better?
For every triangle

ComputeProjection
Compute bbox, clip bbox to screen limits
For all pixels in bbox

Compute line equations ax+by+c
If all line equations>0 //pixel [x,y] in triangle

Framebuffer[x,y]=triangleColor

• We don’t need to recompute line equation from scratch
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Can we do better?
For every triangle

ComputeProjection
Compute bbox, clip bbox to screen limits
Setup line eq

compute aidx, bidy for the 3 lines
Initialize line eq, values for bbox corner

Li=aix0+biy+ci
For all scanline y in bbox

For 3 lines, update Li
For all x in bbox

Increment line equations: Li+=adx
If all Li>0 //pixel [x,y] in triangle

Framebuffer[x,y]=triangleColor

• We save one multiplication per pixel
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The Graphics Pipeline
• Modern hardware mostly 

avoids clipping
• Only with respect to 

plane z=0

Modeling 
Transformations

Illumination
(Shading)

Viewing Transformation
(Perspective / Orthographic)

Clipping

Projection 
(to Screen Space)

Scan Conversion
(Rasterization)

Visibility / Display
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Full Clipping

(eyex, eyey, eyez)

image plane

z axis

"clip" geometry to 
view frustum
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One-plane clipping

(eyex, eyey, eyez)

image plane

z axis

"clip" geometry to 
near plane
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Adding Gouraud shading
• Interpolate colors of the 3 vertices
• Linear interpolation
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Adding Gouraud shading
• Interpolate colors of the 3 vertices
• Linear interpolation, e.g. for R channel:

– R=aRx+bRy+cR

– Such that R[x0,y0]=R0; R[x1, y1]=R1; R[x2,y2]=R2
– Same as a plane equation in (x,y,R)
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Adding Gouraud shading
Interpolate colors 
For every triangle

ComputeProjection
Compute bbox, clip bbox to screen limits
Setup line eq
Setup color equation
For all pixels in bbox

Increment line equations
Increment color equation
If all Li>0 //pixel [x,y] in triangle

Framebuffer[x,y]=interpolatedColor
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In the modern hardware
• Edge eq. in homogeneous coordinates [x, y, w]
• Tiles to add a mid-level granularity

– early rejection of tiles
– Memory access coherence
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Ref
• Henry Fuchs, Jack Goldfeather, Jeff Hultquist, Susan Spach, John 

Austin, Frederick Brooks, Jr., John Eyles and John Poulton, “Fast 
Spheres, Shadows, Textures, Transparencies, and Image 
Enhancements in Pixel-Planes”, Proceedings of SIGGRAPH ‘85 
(San Francisco, CA, July 22–26, 1985). In Computer Graphics, 
v19n3 (July 1985), ACM SIGGRAPH, New York, NY, 1985.

• Juan Pineda, “A Parallel Algorithm for Polygon Rasterization”, 
Proceedings of SIGGRAPH ‘88 (Atlanta, GA, August 1–5, 1988). 
In Computer Graphics, v22n4 (August 1988), ACM SIGGRAPH, 
New York, NY, 1988. Figure 7: Image from the spinning teapot 
performance test.

• Triangle Scan Conversion using 2D Homogeneous Coordinates, 
Marc Olano Trey Greer
http://www.cs.unc.edu/~olano/papers/2dh-tri/2dh-tri.pdf
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Take-home message
• The appropriate algorithm depends on

– Balance between various resources (CPU, memory, 
bandwidth)

– The input (size of triangles, etc.)
• Smart algorithms often have initial preprocess

– Assess whether it is worth it
• To save time, identify redundant computation

– Put outside the loop and interpolate if needed



8

MIT EECS 6.837, Cutler and Durand 43

Questions?
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Today
• Polygon scan conversion

– smart

– back to brute force

• Visibility
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Visibility
• How do we know which parts are visible/in 

front?
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Ray Casting
• Maintain intersection with closest object
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Painter’s algorithm
• Draw back-to-front
• How do we sort objects?
• Can we always sort objects?

1

2

5

4
3

6

7
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Painter’s algorithm
• Draw back-to-front
• How do we sort objects?
• Can we always sort objects?

– No, there can be cycles
– Requires to split polygons

A

B

C

A

B
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Painter’s algorithm
• Old solution for hidden-surface removal

– Good because ordering is useful for other operations 
(transparency, antialiasing)

• But
– Ordering is tough
– Cycles
– Must be done by CPU

• Hardly used now
• But some sort of partial ordering is sometimes useful

– Usuall front-to-back
– To make sure foreground is rendered first
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visibility
• In ray casting, use intersection with closest t
• Now we have swapped the loops (pixel, object)
• How do we do?
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Z buffer
• In addition to frame buffer (R, G, B)
• Store distance to camera (z-buffer)
• Pixel is updated only if new z is closer 

than z-buffer value
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Z-buffer pseudo code
For every triangle

Compute Projection, color at vertices
Setup line equations
Compute bbox, clip bbox to screen limits
For all pixels in bbox

Increment line equations
Compute curentZ
Increment currentColor

If all line equations>0 //pixel [x,y] in triangle
If currentZ<zBuffer[x,y] //pixel is visible

Framebuffer[x,y]=currentColor
zBuffer[x,y]=currentZ
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Works for hard cases!

A

B

C
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What exactly do we store
• Floating point distance
• Can we interpolate z in screen space?

– i.e. does z vary linearly in screen space?
z0

z1

x

image

x’
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Z interpolation
• X’=x/z
• Hyperbolic variation
• Z cannot be linearly interpolated

z0

z1

x

image

x’
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Simple Perspective Projection
• Project all points along the z axis to the z = d

plane, eyepoint at the origin

x
y
z

z / d

=

x
y
z
1

1
0
0
0

0
1
0
0

0
0
1

1/d

0
0
0
0

x * d / z
y * d / z

d
1

=

homogenize
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Yet another Perspective Projection
• Change the z component
• Compute d/z
• Can be linearly interpolated

x
y
1

z / d

=

x
y
z
1

1
0
0
0

0
1
0
0

0
0
0

1/d

0
0
1
0

x * d / z
y * d / z

d/z
1

=

homogenize
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Advantages of 1/z
• Can be interpolated linearly in screen space
• Puts more precision for close objects
• Useful when using integers

– more precision where perceptible 
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Integer z-buffer
• Use 1/z to have more precision in the foreground
• Set a near and far plane

– 1/z values linearly encoded between 1/near and 1/far
• Careful, test direction is reversed

x

far

near
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Integer Z-buffer pseudo code
For every triangle

Compute Projection, color at vertices
Setup line equations, depth equation
Compute bbox, clip bbox to screen limits
For all pixels in bbox

Increment line equations
Increment curent_1ovZ
Increment currentColor

If all line equations>0 //pixel [x,y] in triangle
If current_1ovZ>1ovzBuffer[x,y]//pixel is visible

Framebuffer[x,y]=currentColor
1ovzBuffer[x,y]=current1ovZ
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Gouraud interpolation
• Gouraud: interpolate color linearly in screen space
• Is it correct?

z0

z1

x

image

x’

[R0, G0, B0]

[R1, G1, B1]
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Gouraud interpolation
• Gouraud: interpolate color linearly in screen space
• Not correct. We should use hyperbolic interpolation
• But quite costly (division)

z0

z1

x

image

x’

[R0, G0, B0]

[R1, G1, B1]
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Next time
• Clipping
• Segment intersection & scanline algorithms


